National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Application possibilities of LNVGA programmable amplifier
Sobotka, Josef ; Hanák, Pavel (referee) ; Jeřábek, Jan (advisor)
This thesis deals with the theoretical description of the qualitative characteristics and parameters of some modern active elements, also discusses the theory of signal flow graphs at the level applicable for the following frequency filter design methods. The thesis is also generally discussed the issue with the circuit simulator PSpice modeling theory and voltage amplifiers on the basic 6-levels. The practical part of the work is divided into two parts. The first practical part is dedicated to design four levels of simulation model of components LNVGA element. The second practical part contains detailed theoretical proposals for three circuit structures implementing the frequency filters 2nd order (based on the basic structure of the OTA-C) using signal flow graphs with configuration options of Q and fm based on the parameters of active elements in the peripheral structure and their verification with prepared LNVGA model layers.
Preliminary aerodynamic analysis of remotely controlled model with jet propulsion
Novák, Ondřej ; Zikmund, Pavel (referee) ; Popela, Robert (advisor)
This bachelor´s thesis deals with aerodynamic analysis of unmanned aircraft and subsequent changes to design of wing, its position and wing-fuselage junction. In this work emphasis is laid on flow separation, its interaction with other flow structures and its influence on aerodynamic properties. The goal of these changes to the aircraft is ensuring sufficient stability and controllability in low as well as high angle of attack flight. AVL, XFLR5 and CFD methods were used in the thesis. In case of inaccuracy of CFD calculation, two backup wing related modifications were prepared.
Sensitivity analysis of frequency filters with current active elements
Kupčík, Petr ; Koton, Jaroslav (referee) ; Kubánek, David (advisor)
This bachelor´s thesis is about sensitivity analysis of frequency filters with current active elements. Includes theory of sensitivity analysis and sensitivity function. There are two second order multifunction frequency filters analysed. The first one is filter with Current Mirrors and Inverters (CMI). The second one is filter with Current Operational Amplifiers (COA). Conclusion is description how tolerances of passive and active elements affects frequency characteristics of filters and comparison of these filters in light of sensitivity. Next chapters are occupied by another two analyses: Parametric Sweep and Monte-Carlo. These analyses are applied on two fourth order frequency filters with Differential Input / Output Current Followers (DIOCF) and also on two previous second order filters (only low-pass filters). Parametric Sweep is applied on internal parameters of active filter elements (not in case COA). During Monte-Carlo analysis passive elements have tolerance 5% and active elements are considered ideal. Conclusion is description how tolerances of passive elements (Monte-Carlo) and parametres of active elements (Parametric Sweep) affects frequency characteristics of filters.
Study of Electronic Control and Real Behavior in Variable Filtering and Oscillating Applications of Modern Active Elements
Šotner, Roman ; Ondráček, Oldřich (referee) ; Martínek,, Pravoslav (referee) ; Petržela, Jiří (advisor)
The thesis deals with electronically adjustable and configurable applications of the modern active elements. In the field there were presented various active elements in applications of the analog filters and oscillators which stem from basic and more or less similar principles of circuit synthesis and design. However, there is not provided study of real behavior in detail and in most cases electronic control of the various parameters in application is not verified. In the precise design of application is very important to identify problematic features and determine how much it influences functionality of the device. In this work several filtering structures based on common and modified synthesis principles (integrator loops) are compared in the view of multifunctionality, configurability, variability, kind of used electronic control and impact of influences of real elements on behavior. There are used standard methods like adjusting of variable transconductance, intrinsic value of current input resistance and not so common method based on variable current gain in design of modified and improved multifunctional filtering circuits. The last method of mentioned control enabled to find quite unique filter which allows continuous electronic change of transfer from band-reject to all-pass filter of the 2nd order without reconnection. It is much simpler than previous and more common integrator loops. Larger part of this work is focused on electronically controllable oscillators mainly on quadrature types. There is presented several very simply and elementary realizations which require minimal number of active and passive elements. There are also slightly or more complicated solutions which remove some drawbacks of mentioned simpler variants. First of all there is given attention on study of real behavior which make obvious different problems with mutual dependence of oscillation condition and oscillation frequency, dependence of produced amplitudes (quadrature types) on parameter which is controlling oscillation frequency, influence of this parameter on oscillation condition, etc. In the framework of this part of the thesis there was introduced a novel modification of current conveyor transconductance amplifier (CCTA) so called current-gain-controlled current conveyor transconductance amplifier (CGCCCTA). Requirements for novel applications in the field of oscillators for newly developed controllable current amplifier and digitally controllable current amplifier (DACA) at the Department of Telecommunication FEEC BUT lead to creation of several chapters of this work where mentioned active elements can be used. The important contribution of this work (for practical approach) is also experimental testing of most of designed circuits and determination of exact design equations and rules which take into account real behavior of circuits and confirm results obtained from experiments.
Preliminary aerodynamic analysis of remotely controlled model with jet propulsion
Novák, Ondřej ; Zikmund, Pavel (referee) ; Popela, Robert (advisor)
This bachelor´s thesis deals with aerodynamic analysis of unmanned aircraft and subsequent changes to design of wing, its position and wing-fuselage junction. In this work emphasis is laid on flow separation, its interaction with other flow structures and its influence on aerodynamic properties. The goal of these changes to the aircraft is ensuring sufficient stability and controllability in low as well as high angle of attack flight. AVL, XFLR5 and CFD methods were used in the thesis. In case of inaccuracy of CFD calculation, two backup wing related modifications were prepared.
Study of Electronic Control and Real Behavior in Variable Filtering and Oscillating Applications of Modern Active Elements
Šotner, Roman ; Ondráček, Oldřich (referee) ; Martínek,, Pravoslav (referee) ; Petržela, Jiří (advisor)
The thesis deals with electronically adjustable and configurable applications of the modern active elements. In the field there were presented various active elements in applications of the analog filters and oscillators which stem from basic and more or less similar principles of circuit synthesis and design. However, there is not provided study of real behavior in detail and in most cases electronic control of the various parameters in application is not verified. In the precise design of application is very important to identify problematic features and determine how much it influences functionality of the device. In this work several filtering structures based on common and modified synthesis principles (integrator loops) are compared in the view of multifunctionality, configurability, variability, kind of used electronic control and impact of influences of real elements on behavior. There are used standard methods like adjusting of variable transconductance, intrinsic value of current input resistance and not so common method based on variable current gain in design of modified and improved multifunctional filtering circuits. The last method of mentioned control enabled to find quite unique filter which allows continuous electronic change of transfer from band-reject to all-pass filter of the 2nd order without reconnection. It is much simpler than previous and more common integrator loops. Larger part of this work is focused on electronically controllable oscillators mainly on quadrature types. There is presented several very simply and elementary realizations which require minimal number of active and passive elements. There are also slightly or more complicated solutions which remove some drawbacks of mentioned simpler variants. First of all there is given attention on study of real behavior which make obvious different problems with mutual dependence of oscillation condition and oscillation frequency, dependence of produced amplitudes (quadrature types) on parameter which is controlling oscillation frequency, influence of this parameter on oscillation condition, etc. In the framework of this part of the thesis there was introduced a novel modification of current conveyor transconductance amplifier (CCTA) so called current-gain-controlled current conveyor transconductance amplifier (CGCCCTA). Requirements for novel applications in the field of oscillators for newly developed controllable current amplifier and digitally controllable current amplifier (DACA) at the Department of Telecommunication FEEC BUT lead to creation of several chapters of this work where mentioned active elements can be used. The important contribution of this work (for practical approach) is also experimental testing of most of designed circuits and determination of exact design equations and rules which take into account real behavior of circuits and confirm results obtained from experiments.
Sensitivity analysis of frequency filters with current active elements
Kupčík, Petr ; Koton, Jaroslav (referee) ; Kubánek, David (advisor)
This bachelor´s thesis is about sensitivity analysis of frequency filters with current active elements. Includes theory of sensitivity analysis and sensitivity function. There are two second order multifunction frequency filters analysed. The first one is filter with Current Mirrors and Inverters (CMI). The second one is filter with Current Operational Amplifiers (COA). Conclusion is description how tolerances of passive and active elements affects frequency characteristics of filters and comparison of these filters in light of sensitivity. Next chapters are occupied by another two analyses: Parametric Sweep and Monte-Carlo. These analyses are applied on two fourth order frequency filters with Differential Input / Output Current Followers (DIOCF) and also on two previous second order filters (only low-pass filters). Parametric Sweep is applied on internal parameters of active filter elements (not in case COA). During Monte-Carlo analysis passive elements have tolerance 5% and active elements are considered ideal. Conclusion is description how tolerances of passive elements (Monte-Carlo) and parametres of active elements (Parametric Sweep) affects frequency characteristics of filters.
Application possibilities of LNVGA programmable amplifier
Sobotka, Josef ; Hanák, Pavel (referee) ; Jeřábek, Jan (advisor)
This thesis deals with the theoretical description of the qualitative characteristics and parameters of some modern active elements, also discusses the theory of signal flow graphs at the level applicable for the following frequency filter design methods. The thesis is also generally discussed the issue with the circuit simulator PSpice modeling theory and voltage amplifiers on the basic 6-levels. The practical part of the work is divided into two parts. The first practical part is dedicated to design four levels of simulation model of components LNVGA element. The second practical part contains detailed theoretical proposals for three circuit structures implementing the frequency filters 2nd order (based on the basic structure of the OTA-C) using signal flow graphs with configuration options of Q and fm based on the parameters of active elements in the peripheral structure and their verification with prepared LNVGA model layers.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.